Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592946

RESUMO

Selectively labeling cells with damaged membranes is needed not only for identifying dead cells in culture, but also for imaging membrane barrier dysfunction in pathologies in vivo. Most membrane permeability stains are permanently colored or fluorescent dyes that need washing to remove their non-uptaken extracellular background and reach good image contrast. Others are DNA-binding environment-dependent fluorophores, which lack design modularity, have potential toxicity, and can only detect permeabilization of cell volumes containing a nucleus (i.e., cannot delineate damaged volumes in vivo nor image non-nucleated cell types or compartments). Here, we develop modular fluorogenic probes that reveal the whole cytosolic volume of damaged cells, with near-zero background fluorescence so that no washing is needed. We identify a specific disulfonated fluorogenic probe type that only enters cells with damaged membranes, then is enzymatically activated and marks them. The esterase probe MDG1 is a reliable tool to reveal live cells that have been permeabilized by biological, biochemical, or physical membrane damage, and it can be used in multicolor microscopy. We confirm the modularity of this approach by also adapting it for improved hydrolytic stability, as the redox probe MDG2. We conclude by showing the unique performance of MDG probes in revealing axonal membrane damage (which DNA fluorogens cannot achieve) and in discriminating damage on a cell-by-cell basis in embryos in vivo. The MDG design thus provides powerful modular tools for wash-free in vivo imaging of membrane damage, and indicates how designs may be adapted for selective delivery of drug cargoes to these damaged cells: offering an outlook from selective diagnosis toward therapy of membrane-compromised cells in disease.

2.
Nat Commun ; 15(1): 1696, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402207

RESUMO

The yellow fever 17D vaccine (YF17D) is highly effective but is frequently administered to individuals with pre-existing cross-reactive immunity, potentially impacting their immune responses. Here, we investigate the impact of pre-existing flavivirus immunity induced by the tick-borne encephalitis virus (TBEV) vaccine on the response to YF17D vaccination in 250 individuals up to 28 days post-vaccination (pv) and 22 individuals sampled one-year pv. Our findings indicate that previous TBEV vaccination does not affect the early IgM-driven neutralizing response to YF17D. However, pre-vaccination sera enhance YF17D virus infection in vitro via antibody-dependent enhancement (ADE). Following YF17D vaccination, TBEV-pre-vaccinated individuals develop high amounts of cross-reactive IgG antibodies with poor neutralizing capacity. In contrast, TBEV-unvaccinated individuals elicit a non-cross-reacting neutralizing response. Using YF17D envelope protein mutants displaying different epitopes, we identify quaternary dimeric epitopes as the primary target of neutralizing antibodies. Additionally, TBEV-pre-vaccination skews the IgG response towards the pan-flavivirus fusion loop epitope (FLE), capable of mediating ADE of dengue and Zika virus infections in vitro. Together, we propose that YF17D vaccination conceals the FLE in individuals without prior flavivirus exposure but favors a cross-reactive IgG response in TBEV-pre-vaccinated recipients directed to the FLE with potential to enhance dengue virus infection.


Assuntos
Dengue , Vírus da Encefalite Transmitidos por Carrapatos , Vacina contra Febre Amarela , Infecção por Zika virus , Zika virus , Humanos , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecção por Zika virus/prevenção & controle , Epitopos , Imunoglobulina G , Dengue/prevenção & controle
3.
J Biol Chem ; 300(1): 105581, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141765

RESUMO

Metastasis still accounts for 90% of all cancer-related death cases. An increase of cellular mobility and invasive traits of cancer cells mark two crucial prerequisites of metastasis. Recent studies highlight the involvement of the endolysosomal cation channel TRPML1 in cell migration. Our results identified a widely antimigratory effect upon loss of TRPML1 function in a panel of cell lines in vitro and reduced dissemination in vivo. As mode-of-action, we established TRPML1 as a crucial regulator of cytosolic calcium levels, actin polymerization, and intracellular trafficking of two promigratory proteins: E-cadherin and ß1-integrin. Interestingly, KO of TRPML1 differentially interferes with the recycling process of E-cadherin and ß1-integrin in a cell line-dependant manner, while resulting in the same phenotype of decreased migratory and adhesive capacities in vitro. Additionally, we observed a coherence between reduction of E-cadherin levels at membrane site and phosphorylation of NF-κB in a ß-catenin/p38-mediated manner. As a result, an E-cadherin/NF-κB feedback loop is generated, regulating E-cadherin expression on a transcriptional level. Consequently, our findings highlight the role of TRPML1 as a regulator in migratory processes and suggest the ion channel as a suitable target for the inhibition of migration and invasion.


Assuntos
Caderinas , Movimento Celular , Integrina beta1 , Neoplasias , Canais de Potencial de Receptor Transitório , Caderinas/metabolismo , Linhagem Celular Tumoral , Integrina beta1/metabolismo , Neoplasias/metabolismo , NF-kappa B , Humanos , Lisossomos , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Camundongos , Cálcio/metabolismo , Transporte Proteico
4.
ACS Cent Sci ; 9(4): 763-776, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122469

RESUMO

Small-molecule prodrug approaches that can activate cancer therapeutics selectively in tumors are urgently needed. Here, we developed the first antitumor prodrugs designed for activation by thiol-manifold oxidoreductases, targeting the thioredoxin (Trx) system. The Trx system is a critical cellular redox axis that is tightly linked to dysregulated redox/metabolic states in cancer, yet it cannot be addressed by current bioreductive prodrugs, which mainly cluster around oxidized nitrogen species. We instead harnessed Trx/TrxR-specific artificial dichalcogenides to gate the bioactivity of 10 "off-to-on" reduction-activated duocarmycin prodrugs. The prodrugs were tested for cell-free and cellular reductase-dependent activity in 177 cell lines, establishing broad trends for redox-based cellular bioactivity of the dichalcogenides. They were well tolerated in vivo in mice, indicating low systemic release of their duocarmycin cargo, and in vivo anti-tumor efficacy trials in mouse models of breast and pancreatic cancer gave promising indications of effective tumoral drug release, presumably by in situ bioreductive activation. This work therefore presents a chemically novel class of bioreductive prodrugs against a previously unaddressed reductase chemotype, validates its ability to access in vivo-compatible small-molecule prodrugs even of potently cumulative toxins, and so introduces carefully tuned dichalcogenides as a platform strategy for specific bioreduction-based release.

5.
Org Biomol Chem ; 20(39): 7787-7794, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36172848

RESUMO

Novel photoswitches offering features complementary to the well-established azobenzenes are increasingly driving high-precision research in cellular photopharmacology. Styrylthiazolium (StyTz) and styrylbenzothiazolium (StyBtz) are cellularly untested E/Z-isomerisation photoswitches which are nearly isosteric to azobenzenes, but have distinct properties: including ca. 60 nm red-shifted π → π* absorption, self-reporting fluorescence, Z → E relaxation on typical biological timescales, and decent solubility (positive charge). We tested StyTz and StyBtz for their potential as photopharmaceutical scaffolds, by applying them to photocontrol microtubule dynamics. They light-specifically disrupt microtubule network architecture and block cell proliferation: yet, testing lead compound StyBtz2 for its molecular mechanism of action showed that it did not inhibit microtubule dynamics. Using its self-reporting fluorescence, we tracked its localisation in live cells and observed accumulation of E-StyBtz2 into mitochondria; during prolonged illumination, it was released into the cytosol, and blebbing and cell death were observed. We interpret this as light-dependent rupturing of mitochondria on acute timescales. We conclude that StyTz/StyBtz can be interesting photopharmaceutical scaffolds for addressing mitochondrial, rather than cytosolic, targets.


Assuntos
Compostos Azo , Mitocôndrias , Compostos Azo/farmacologia , Morte Celular , Corantes , Mitocôndrias/metabolismo
6.
Chem ; 8(5): 1493-1517, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35936029

RESUMO

Quantifying the activity of key cellular redox players is crucial for understanding physiological homeostasis, and for targeting their perturbed states in pathologies including cancer and inflammatory diseases. However, cellularly-selective probes for oxidoreductase turnover are sorely lacking. We rationally developed the first probes that selectively target the mammalian selenoprotein thioredoxin reductase (TrxR), using a cyclic selenenylsulfide oriented to harness TrxR's unique selenolthiol chemistry while resisting the cellular monothiol background. Lead probe RX1 had excellent TrxR1-selective performance in cells, cross-validated by knockout, selenium starvation, knock-in, and chemical inhibitors. Its background-free fluorogenicity enabled us to perform the first quantitative high-throughput live cell screen for TrxR1 inhibitors, which indicated that tempered SNAr electrophiles may be more selective TrxR drugs than the classical electrophiles used hitherto. The RX1 design thus sets the stage for in vivo imaging of the activity of this key oxidoreductase in health and disease, and can also drive TrxR1-inhibitor drug design.

7.
Microbiol Spectr ; 10(3): e0254821, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35670599

RESUMO

Quick and accurate detection of neutralizing antibodies (nAbs) against yellow fever is essential in serodiagnosis during outbreaks for surveillance and to evaluate vaccine efficacy in population-wide studies. All of this requires serological assays that can process a large number of samples in a highly standardized format. Albeit being laborious, time-consuming, and limited in throughput, the classical plaque reduction neutralization test (PRNT) is still considered the gold standard for the detection and quantification of nAbs due to its sensitivity and specificity. Here, we report the development of an alternative fluorescence-based serological assay (SNTFLUO) with an equally high sensitivity and specificity that is fit for high-throughput testing with the potential for automation. Finally, our novel SNTFLUO was cross-validated in several reference laboratories and against international WHO standards, showing its potential to be implemented in clinical use. SNTFLUO assays with similar performance are available for the Japanese encephalitis, Zika, and dengue viruses amenable to differential diagnostics. IMPORTANCE Fast and accurate detection of neutralizing antibodies (nAbs) against yellow fever virus (YFV) is key in yellow fever serodiagnosis, outbreak surveillance, and monitoring of vaccine efficacy. Although classical PRNT remains the gold standard for measuring YFV nAbs, this methodology suffers from inherent limitations such as low throughput and overall high labor intensity. We present a novel fluorescence-based serum neutralization test (SNTFLUO) with equally high sensitivity and specificity that is fit for processing a large number of samples in a highly standardized manner and has the potential to be implemented for clinical use. In addition, we present SNTFLUO assays with similar performance for Japanese encephalitis, Zika, and dengue viruses, opening new avenues for differential diagnostics.


Assuntos
Encefalite Japonesa , Febre Amarela , Infecção por Zika virus , Zika virus , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Testes de Neutralização/métodos , Febre Amarela/diagnóstico , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Vírus da Febre Amarela
8.
Nat Commun ; 13(1): 1754, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365603

RESUMO

The cyclic five-membered disulfide 1,2-dithiolane has been widely used in chemical biology and in redox probes. Contradictory reports have described it either as nonspecifically reduced in cells, or else as a highly specific substrate for thioredoxin reductase (TrxR). Here we show that 1,2-dithiolane probes, such as "TRFS" probes, are nonspecifically reduced by thiol reductants and redox-active proteins, and their cellular performance is barely affected by TrxR inhibition or knockout. Therefore, results of cellular imaging or inhibitor screening using 1,2-dithiolanes should not be interpreted as reflecting TrxR activity, and previous studies may need re-evaluation. To understand 1,2-dithiolanes' complex behaviour, probe localisation, environment-dependent fluorescence, reduction-independent ring-opening polymerisation, and thiol-dependent cellular uptake must all be considered; particular caution is needed when co-applying thiophilic inhibitors. We present a general approach controlling against assay misinterpretation with reducible probes, to ensure future TrxR-targeted designs are robustly evaluated for selectivity, and to better orient future research.


Assuntos
Dissulfetos , Tiorredoxina Dissulfeto Redutase , Dissulfetos/metabolismo , Fluorescência , Oxirredução , Tiorredoxina Dissulfeto Redutase/metabolismo
9.
J Am Chem Soc ; 144(12): 5614-5628, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290733

RESUMO

Photoswitchable reagents are powerful tools for high-precision studies in cell biology. When these reagents are globally administered yet locally photoactivated in two-dimensional (2D) cell cultures, they can exert micron- and millisecond-scale biological control. This gives them great potential for use in biologically more relevant three-dimensional (3D) models and in vivo, particularly for studying systems with inherent spatiotemporal complexity, such as the cytoskeleton. However, due to a combination of photoswitch isomerization under typical imaging conditions, metabolic liabilities, and insufficient water solubility at effective concentrations, the in vivo potential of photoswitchable reagents addressing cytosolic protein targets remains largely unrealized. Here, we optimized the potency and solubility of metabolically stable, druglike colchicinoid microtubule inhibitors based on the styrylbenzothiazole (SBT) scaffold that are nonresponsive to typical fluorescent protein imaging wavelengths and so enable multichannel imaging studies. We applied these reagents both to 3D organoids and tissue explants and to classic model organisms (zebrafish, clawed frog) in one- and two-protein imaging experiments, in which spatiotemporally localized illuminations allowed them to photocontrol microtubule dynamics, network architecture, and microtubule-dependent processes in vivo with cellular precision and second-level resolution. These nanomolar, in vivo capable photoswitchable reagents should open up new dimensions for high-precision cytoskeleton research in cargo transport, cell motility, cell division, and development. More broadly, their design can also inspire similarly capable optical reagents for a range of cytosolic protein targets, thus bringing in vivo photopharmacology one step closer to general realization.


Assuntos
Microtúbulos , Peixe-Zebra , Animais , Citoesqueleto , Indicadores e Reagentes/metabolismo , Microtúbulos/metabolismo , Mitose
10.
PLoS One ; 17(2): e0262149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139078

RESUMO

There is an urgent need for better diagnostic and analytical methods for vaccine research and infection control in virology. This has been highlighted by recently emerging viral epidemics and pandemics (Zika, SARS-CoV-2), and recurring viral outbreaks like the yellow fever outbreaks in Angola and the Democratic Republic of Congo (2016) and in Brazil (2016-2018). Current assays to determine neutralising activity against viral infections in sera are costly in time and equipment and suffer from high variability. Therefore, both basic infection research and diagnostic population screenings would benefit from improved methods to determine virus-neutralising activity in patient samples. Here we describe a robust, objective, and scalable Fluorescence Reduction Neutralisation Test (FluoRNT) for yellow fever virus, relying on flow cytometric detection of cells infected with a fluorescent Venus reporter containing variant of the yellow fever vaccine strain 17D (YF-17D-Venus). It accurately measures neutralising antibody titres in human serum samples within as little as 24 h. Samples from 32 vaccinees immunised with YF-17D were tested for neutralising activity by both a conventional focus reduction neutralisation test (FRNT) and FluoRNT. Both types of tests proved to be equally reliable for the detection of neutralising activity, however, FluoRNT is significantly more precise and reproducible with a greater dynamic range than conventional FRNT. The FluoRNT assay protocol is substantially faster, easier to control, and cheaper in per-assay costs. FluoRNT additionally reduces handling time minimising exposure of personnel to patient samples. FluoRNT thus brings a range of desirable features that can accelerate and standardise the measurement of neutralising anti-yellow fever virus antibodies. It could be used in applications ranging from vaccine testing to large cohort studies in systems virology and vaccinology. We also anticipate the potential to translate the methodology and analysis of FluoRNT to other flaviviruses such as West Nile, Dengue and Zika or to RNA viruses more generally.


Assuntos
Anticorpos Neutralizantes/imunologia , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Fluorescência , Humanos , Testes de Neutralização/economia , Testes de Neutralização/métodos , Células Vero , Febre Amarela/sangue , Febre Amarela/virologia
11.
Angew Chem Int Ed Engl ; 61(10): e202114614, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902214

RESUMO

Optical methods to modulate microtubule dynamics show promise for reaching the micron- and millisecond-scale resolution needed to decrypt the roles of the cytoskeleton in biology. However, optical microtubule stabilisers are under-developed. We introduce "STEpos" as GFP-orthogonal, light-responsive epothilone-based microtubule stabilisers. They use a novel styrylthiazole photoswitch in a design to modulate hydrogen-bonding and steric effects that control epothilone potency. STEpos photocontrol microtubule dynamics and cell division with micron- and second-scale spatiotemporal precision. They substantially improve potency, solubility, and ease-of-use compared to previous optical microtubule stabilisers, and the structure-photoswitching-activity relationship insights in this work will guide future optimisations. The STEpo reagents can contribute greatly to high-precision research in cytoskeleton biophysics, cargo transport, cell motility, cell division, development, and neuroscience.


Assuntos
Citoesqueleto/química , Epotilonas/química , Proteínas de Fluorescência Verde/química , Microtúbulos/química , Estirenos/química , Tiazóis/química , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos
12.
Angew Chem Int Ed Engl ; 60(44): 23695-23704, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34460143

RESUMO

We report the first cellular application of the emerging near-quantitative photoswitch pyrrole hemithioindigo, by rationally designing photopharmaceutical PHTub inhibitors of the cytoskeletal protein tubulin. PHTubs allow simultaneous visible-light imaging and photoswitching in live cells, delivering cell-precise photomodulation of microtubule dynamics, and photocontrol over cell cycle progression and cell death. This is the first acute use of a hemithioindigo photopharmaceutical for high-spatiotemporal-resolution biological control in live cells. It additionally demonstrates the utility of near-quantitative photoswitches, by enabling a dark-active design to overcome residual background activity during cellular photopatterning. This work opens up new horizons for high-precision microtubule research using PHTubs and shows the cellular applicability of pyrrole hemithioindigo as a valuable scaffold for photocontrol of a range of other biological targets.


Assuntos
Antimitóticos/metabolismo , Índigo Carmim/análogos & derivados , Microtúbulos/metabolismo , Pirróis/metabolismo , Análise de Célula Única , Antimitóticos/química , Ciclo Celular , Morte Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Índigo Carmim/química , Índigo Carmim/metabolismo , Microtúbulos/química , Estrutura Molecular , Processos Fotoquímicos , Pirróis/química
13.
J Am Chem Soc ; 143(23): 8791-8803, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34061528

RESUMO

Specialized cellular networks of oxidoreductases coordinate the dithiol/disulfide-exchange reactions that control metabolism, protein regulation, and redox homeostasis. For probes to be selective for redox enzymes and effector proteins (nM to µM concentrations), they must also be able to resist non-specific triggering by the ca. 50 mM background of non-catalytic cellular monothiols. However, no such selective reduction-sensing systems have yet been established. Here, we used rational structural design to independently vary thermodynamic and kinetic aspects of disulfide stability, creating a series of unusual disulfide reduction trigger units designed for stability to monothiols. We integrated the motifs into modular series of fluorogenic probes that release and activate an arbitrary chemical cargo upon reduction, and compared their performance to that of the literature-known disulfides. The probes were comprehensively screened for biological stability and selectivity against a range of redox effector proteins and enzymes. This design process delivered the first disulfide probes with excellent stability to monothiols yet high selectivity for the key redox-active protein effector, thioredoxin. We anticipate that further applications of these novel disulfide triggers will deliver unique probes targeting cellular thioredoxins. We also anticipate that further tuning following this design paradigm will enable redox probes for other important dithiol-manifold redox proteins, that will be useful in revealing the hitherto hidden dynamics of endogenous cellular redox systems.

14.
Front Immunol ; 12: 595390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995343

RESUMO

Replication competent vesicular stomatitis virus (VSV) is the basis of a vaccine against Ebola and VSV strains are developed as oncolytic viruses. Both functions depend on the ability of VSV to induce adequate amounts of interferon-α/ß. It is therefore important to understand how VSV triggers interferon responses. VSV activates innate immunity via retinoic acid-inducible gene I (RIG-I), a sensor for viral RNA. Our results show that VSV needs to replicate for a robust interferon response. Analysis of RIG-I-associated RNA identified a copy-back defective-interfering (DI) genome and full-length viral genomes as main trigger of RIG-I. VSV stocks depleted of DI genomes lost most of their interferon-stimulating activity. The remaining full-length genome and leader-N-read-through sequences, however, still triggered RIG-I. Awareness for DI genomes as trigger of innate immune responses will help to standardize DI genome content and to purposefully deplete or use DI genomes as natural adjuvants in VSV-based therapeutics.


Assuntos
Proteína DEAD-box 58/metabolismo , Genoma Viral , Mutação , Receptores Imunológicos/metabolismo , Estomatite Vesicular/metabolismo , Estomatite Vesicular/virologia , Vírus da Estomatite Vesicular Indiana/fisiologia , Replicação Viral , Animais , Linhagem Celular , Genoma Viral/genética , Genoma Viral/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunomodulação , RNA Viral/genética , RNA Viral/imunologia
15.
Microbiol Immunol ; 65(5): 214-227, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33650163

RESUMO

Hospital-acquired infections due to multi-drug resistant Gram-negative organisms (MDRGNO) pose a major threat to global health. A vaccine preventing colonization and consecutive infection with MDRGNO could be particularly valuable, as therapeutic options become increasingly limited. Outer membrane vesicles (OMV) of Escherichia coli strain CFT073 as well as three MDRGNO strains that had caused severe infections in humans were administered intranasally to mice, with and without cholera toxin as an adjuvant. The humoral immune responses were comparatively matched with the sera of patients, who had suffered an infection caused by the respective bacterium. Additionally, systemic and local toxicity was evaluated. Intranasal vaccination with OMV could elicit solid humoral immune responses (total IgM and IgG), specific for the respective MDRGNO in mice; decoration of vital bacterial membranes with antibodies was comparable to patients who had survived systemic infection with the respective bacterial isolate. After intranasal vaccination of mice with OMV no signs of local or systemic toxicity were observed. Intranasal vaccination with OMV may open up a rapid vaccine approach to prevent colonization and/or infection with pathogenic MDRGNOs, especially in an outbreak setting within a hospital. It may also be an option for patients who have to undergo elective interventions in centers with a high risk of infection for certain common MDRGNO. Future studies need to include challenge experiments as well as phase I trials in humans.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas , Farmacorresistência Bacteriana Múltipla , Infecções por Bactérias Gram-Negativas/prevenção & controle , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/microbiologia , Bactérias Gram-Negativas , Humanos , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA